Wie schnell kann ein Mensch Rad fahren?
Der britische Radrennfahrer Neil Campbell stellte vor kurzem einen neuen Rekord für das "schnellste Fahrrad im Windschatten" der Männer auf, indem er eine atemberaubende Geschwindigkeit von 280 km/h erreichte.
Neil Campbell’s record-breaking performanceThis record involves bringing a cyclist up to speed in the wake of a towing vehicle, then releasing the bike and timing the rider over a 200m distance. The overall record stands at 296km per hour, set in September 2018 by Denise Mueller-Korenek, who was towed by a dragster on Utah’s Bonneville Salt Flats. But just how much can these high cycling speeds can be attributed to human performance? Does it take a supreme athlete to maintain that speed after release, or is the vehicle really doing all the hard work? And if so, does that mean even faster records are possible? By considering the energy supply and demand involved in Campbell’s new men’s record, we can begin to appreciate the relative contributions from human and machine. For this record, energy comes from both the car’s fuel combustion and from human power. The power required to maintain a given speed depends on the resistive force acting against the rider’s forward motion. On a flat course at a constant speed, there are two key components:- Luftwiderstand, auch als aerodynamischer Widerstand bezeichnet
- Rollwiderstand, der im Wesentlichen die Reibung zwischen Rädern und Straße, die Reibung in den Radlagern und die Effizienz der Kraftübertragung von den Pedalen über die Kette auf die Räder umfasst.
Wenn Sie schnell fahren wollen und die Möglichkeit haben, eine der Widerstandskräfte aus der Physik auszuschließen, wäre es ratsam, die aerodynamische Komponente zu entfernen.To put this in context, in elite level track cycling (where there are obviously no cars to hide behind!), aerodynamic drag typically accounts for about 95% of the total resistive force. Thus the towing vehicle in Campbell’s record attempt helped him in two crucial ways. First, it brought him up to speed, thus reducing his energy expenditure during acceleration. Second, the car’s slipstream attachment (basically a cross between a spoiler and a tent, behind which Campbell positioned himself during the ride) removed much of the aerodynamic resistance that would otherwise become insurmountable at such dizzying speeds. By riding in the vehicle’s wake, the rider will experience both low relative wind speeds and low aerodynamic resistance. In fact, if the rider is positioned correctly, the air flow in the car’s wake can actually generate a propulsive aerodynamic force – effectively, the vehicle “drags” some air behind it, and the rider can thus be sucked along with it. What about the physical demands of maintaining that speed after the tow release? This primarily depends on the size of the gear being used, and of the rolling resistance that needs to be overcome. By my calculations, and assuming aerodynamic drag behind the tow car is negligible, hitting 300km per hour (the next big milestone for both the mens’ and womens’ slipstream records) would require the rider to maintain a power output of 600-700 watts for the 2.4 seconds it would take to ride through the 200m time trap. This seems achievable enough, given Tour de France riders can put out more than 1,000W for a full minute or more. So the tow vehicle is really the crucial factor, rather than the rider’s physical performance. In fact, if the rider were to pull out of the slipstream after being towed up to 300km per hour, the energy demand to maintain this speed would be on the order of 100 kilowatts – roughly the performance of a high-powered motorcycle!